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Degeneration-Aware Outlier Mitigation for Visual
Inertial Integrated Navigation System

in Urban Canyons
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Abstract— In this article, we proposed a graduated nonconvex-
ity (GNC) aided outlier mitigation method for the improvement
of the visual-inertial integrated navigation system (VINS) to
face the challenge of dynamic environments with numerous
unexpected outlier measurements. A GNC optical flow algorithm
was proposed for the detection of the outliers of feature tracking
in the front-end of VINS by iteratively estimating the optical
flow and the optimal weightings of feature correspondences.
Then the feature correspondences with small weightings were
excluded. However, excessive outlier exclusion may cause insuf-
ficient constraints on the state, causing degeneration of VINS.
To solve the problem, this article proposed to detect the potential
degeneration based on the degree of constraint in different direc-
tions of the pose estimation. Then the number of features being
considered was intelligently adapted based on the degeneration
level to improve the geometry constraint in the coming epochs.
We evaluated the effectiveness of the proposed method by using
two challenging datasets (including challenging night scenarios)
collected in urban canyons of Hong Kong. The results show that
the proposed method can effectively reject the potential outlier
visual measurements, and alleviate the degeneration, leading to
improved positioning performance in both evaluated datasets.

Index Terms— Graduated nonconvexity (GNC), navigation,
optimization method, outlier measurements, urban canyons,
visual-inertial integrated navigation system (VINS), visual
odometry.

I. INTRODUCTION

THE visual-inertial integrated navigation system (VINS)
is widely studied in the past few years aiming to pro-

vide accurate state estimation of autonomous systems, e.g.,
autonomous driving vehicles (ADVs) [1] and unmanned aer-
ial vehicles (UAVs) [2], [3]. Significant achievements have
been obtained from the research on the VINS, such as
the filtering-based methods, including multistate constraint
Kalman filter (MSCKF) [4], robust visual-inertial odometry
(ROVIO) [5], and open source for the visual-inertial nav-
igation system (Openvins) [6]. The other research stream
is the optimization-based VINS pipelines, including the ori-
ented brief simultaneous localization and mapping (ORB-
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SLAM3) [7], open keyframe-based visual-inertial SLAM
(OKVIS) [8], and monocular visual-inertial systems (VINS-
Mono) [9]. The recent work in [10] extensively evaluates the
performances of these existing VINS pipelines by using the
popular European robotics challenge (EuRoC) datasets [11]
with satisfactory illumination conditions and sufficient envi-
ronment features. According to the conclusion provided in
the work [10], if the resource budget of computation for the
state estimation is sufficient, VINS-Mono can provide the best
accuracy and robustness among all of the evaluated hardware
platforms and datasets.

However, the realistic urbanized road scenarios face more
challenges, such as unexpected dynamic objects (e.g., moving
vehicles and pedestrians) [12]–[14] and motion blur caused
by fast vehicle movement [15]. To further study the perfor-
mance of the VINS in the challenging outdoor urban canyons,
we evaluated and analyzed the VINS-Mono [9] based on the
datasets collected in urban canyons of Hong Kong. According
to the result [16], the accuracy of VINS was significantly
decreased in the evaluated urban canyons with the accumulated
error reaching 34.21 m in a driving distance of 2.1 km. The
main reason accounting for the large errors is that the outliers
caused by dynamic objects and motion blur are used for further
positioning. Specifically, the existence of the dynamic objects
can lead to incorrect feature tracking between consecutive
images, thereby resulting in large errors in data association
in the back-end optimization of VINS. On the other hand, the
motion blur may increase the noise of visual measurements
and even fail the feature tracking. Typically, in the front-
end of VINS, the optical flow [17] is commonly used to
track the feature correspondences between consecutive images.
Compared with the descriptor-based feature tracking (e.g.,
ORB descriptor [7]), the optical flow-based tracking is charac-
terized by lightweight and satisfactory accuracy [9] when the
consecutive images are sufficient in texture. Therefore, one
of the keys to the performance improvement of VINS in the
urban canyon is to isolate the outlier measurements in the
feature tracking of the front-end. In this article, we propose
a graduated nonconvexity (GNC)-aided optical flow (GNC-
OF) for the feature tracking in the front-end of VINS to
detect the potential outlier measurements by using a coarse-
to-fine process. The detected outlier measurements are then
excluded from the back-end optimization of VINS. However,
based on our previous work in [12], the excessive exclusion
of visual measurements may lead to degeneration of the state
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estimation. In view of this, this article proposes a method
for the identification of the resulted degeneration by consid-
ering the degree of constraint in different directions of pose
estimation. Then, the number of features being considered is
intelligently adapted based on the degeneration level, thereby
improving the geometry constraint in the coming epochs.

The main contributions of this article are listed as follows.

1) This article enables outlier visual measurement detection
by using a proposed GNC-OF method without reliance
on complicated semantic segmentation. Meanwhile, this
article is a continuous work of [13] and enables outlier
detection on an epoch-by-epoch basis.

2) This article proposes a novel method for the detection
of the degeneration caused by outlier exclusion. More-
over, a solution to alleviate the caused degeneration is
proposed.

3) This article validates the effectiveness of the proposed
method based on two challenging datasets (including a
night scene dataset) collected in urban canyons of Hong
Kong.

The rest of this article is organized as follows. Related
works are presented in Section II, which are followed by an
overview of the proposed method in Section III. The deriva-
tion of the proposed GNC-OF is elaborated in Section IV.
In Section V, the visual/inertial integration together with the
degeneration detection and alleviation are presented. Besides,
several real experiments were performed for the evaluation
of the effectiveness of the proposed method in Section VI.
Finally, the conclusions are drawn, and future work is sug-
gested in Section VII.

II. RELATED WORKS

A. Existing Works on Visual Outlier Mitigation

To fill this gap, numerous works [18]–[20] have been done
on improving the performance of the VINS in dynamic urban
scenarios. It is a straightforward way to detect and remove
the features arising from the dynamic objects by using the
convolutional neural networks (CNNs), like semantic pixel-
wise segmentation (SegNet) [21] and single-shot multibox
detector (SSD) [22]. An object detection network SSD [18]
was proposed for moving objects detection based on prior
knowledge, and the detected dynamic features were removed
to guarantee the accurate motion estimation. Additionally,
a semantic optical flow simultaneous localization and mapping
(SLAM) [20] was proposed to detect dynamic features by
using the SegNet, thereby making full use of the feature’s
dynamic characteristic, and the dynamic features are removed
in the optimization module.

Instead of the direct removal of the detected features from
dynamic objects, we proposed to remodel the outlier features
in [12], and the improved performance is obtained compared
with the full removal. However, the studied methods in [12]
rely on the accuracy of object detection, and the potential static
vehicles detected by CNNs may also be removed. Therefore,
a multilevel random sample consensus (ML-RANSAC) algo-
rithm [23] was proposed to solve the problem of discriminating
between static and dynamic objects. However, these methods

heavily rely on the pretrained network model which could be
time-consuming. Moreover, the outlier measurements arising
from motion blur cannot be detected or mitigated by using the
stream methods.

The other research stream lies in the utilization of the
general time-correlated statistical model to detect the poten-
tial outlier measurements in the front-end or back-end of
VINS. The previous work [13] proposed to adaptively tune
the weightings of the visual measurements in the back-end
optimization based on the quality of feature tracking in several
consecutive epochs. The work argues that the uncertainty of
the feature correspondence was highly correlated with the
number of times for feature tracking. Moreover, an adaptive
M-estimator [24] was proposed in [13] to mitigate the effects
of the potential outlier measurements and obtain improved
accuracy in the evaluated datasets. However, the improvement
of the method relies on the percentage of the outlier measure-
ments in the feature tracking of the front-end and parameter
tuning of the adaptive M-estimator. The famous switchable
constraint [25] was studied to probabilistically identify the
potential outlier measurements inside a combined factor graph
optimization (FGO) framework, and an improved result was
achieved. However, the result relies heavily on the initial
guess of switchable constraints. Recently, the research team
from the Massachusetts Institute of Technology proposed a
GNC aided robust and global outlier rejection method [26]
to efficiently solve the problem of point cloud registration
by formulating the robust least-square estimation as the com-
bination of weighted least squares and the outlier process
using the Black–Rangarajan duality [27]. The work solves the
nonconvexity issue arising from the Geman McClure (GM)
function via the GNC and enables the global and optimal
estimation of the weightings of corresponding measurements
simultaneously. However, a distinct boundary exists between
the inlier and outlier measurements in the evaluated dataset,
which limits the challenges for detecting the outlier measure-
ments, while its potential in other fields is still needed to
be explored. Inspired by the work [26], this article proposed
to formulate a GNC-OF for visual outlier mitigation together
with a degeneration detection and alleviation method.

B. Conventional Optical Flow for Feature Tracking

Feature tracking plays an important role in determining the
performance of data association in the back-end of VINS. The
objective of feature tracking is to find the correct feature corre-
spondence between two consecutive frames of images. In gen-
eral, the solutions to perform feature tracking mainly include
two groups, i.e., the descriptor-based [7] and optical flow-
based [28] methods. The former, such as the ORB-SLAM3 [7],
represents the visual features using the ORB descriptors. Then,
the features detected in two consecutive frames are matched
based on corresponding descriptors in a one-to-many manner.
However, brute descriptor-based matching may result in a
high computational load. Different from the descriptor-based
feature tracking, the optical flow-based method, such as the
state-of-the-art Lucas–Kanade (LK) optical flow [17], track
the features directly in a one-to-one manner, which is adopted
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in many VINS pipelines, such as MSCKF [4], ROVIO [5],
Openvins [6], and VINS-Mono [9].

In theory, the traditional LK optical flow works under three
key assumptions [17]: 1) Image brightness constancy: the same
features within two consecutive images should have the same
brightness; 2) Small motion: the features only involve short-
term motion; and 3) Spatial smoothness: the pixels within a
small window of the given features should have the same
movement. Given a feature represented by I (u, v, t), it is
detected by using a typical corner-based descriptor [29] where
I (u, v, t) denotes the pixel intensity of the pixel (u, v) at time
t . When the pixel moves between two consecutive frames
over time dt , the corresponding displacement is denoted by
(du, dv), which is a quite small movement [17]. Based on the
first assumption of LK optical flow, the pixel intensity in two
consecutive images satisfies the requirements of the following
equation:

I (u, v, t) = I (u + du, v + dv, t + dt) (1)

where I (u, v, t) and I (u + du, v + dv, t + dt) denote the
intensity of the pixel (u, v) at time t and (t +dt), respectively.
By applying the first-order Taylor series expansion, the right
side of (1) can be formulated as follows [17]:

I (u + du, v + dv, t + dt)

= I (u, v, t) + ∂ I

∂u
du + ∂ I

∂v
dv + ∂ I

∂ t
dt (2)

where (∂ I/∂u) and (∂ I/∂v) represent the gradient of the pixel
intensity concerning u and v, respectively. (∂ I/∂ t) denotes the
gradient of the pixel intensity concerning time t . Again, based
on the first assumption of LK optical flow, we can get

∂ I

∂u

du

dt
+ ∂ I

∂v

dv

dt
= −∂ I

∂ t
. (3)

Hence, the objective of the optical flow [17] is to solve
((du/dt), (dv/dt)) to determine the pixel displacement over
time dt . To simplify, we define �u = (du/dt), �v = (dv/dt),
Iu = (∂ I/∂u), Iv = (∂ I/∂v), and It = (∂ I/∂ t). Then (3) can
be rewritten as follows [17]:�

Iu Iv
���u

�v

�
= −It . (4)

There is only one equation but two unknown variables
(�u,�v)T , therefore, additional constraints are needed to
solve the optical flow problems. To fill this gap, the third
assumption of spatial smoothness is proposed [17], which
means all neighboring pixels of the detected feature pixel have
the same movement. Taking a small window of n × n around
the detected feature (u, v) and referring to the spatial smooth-
ness, all n × n pixels have the same movement (�u,�v)T.
Therefore, there will be n × n equations similar to (4). The
set of equations is represented as follows:⎡

⎢⎢⎢⎣
Iu1 Iv1

Iu2 Iv2
...

Iui

...
Ivi

⎤
⎥⎥⎥⎦

�
�u
�v

�
= −

⎡
⎢⎢⎢⎣

It1

It2
...

Iti

⎤
⎥⎥⎥⎦, i ∈ (1, n × n) (5)

where Iui , Ivi , andI ti denote the image gradients (difference of
pixel value) along the u, v-axis, and over time t of i th pixel

Fig. 1. Example of a failure of feature tracking of optical flow.

in the small window of the image. n ×n represents the size of
the small window. According to (5), there are two unknowns
with n × n equations, which are over-determined. To address
the over-determination, the least-squares estimation is used to
solve (6) as follows:�

�u
�v

�
= �

ATA
−1

AT(−b)

with A =

⎡
⎢⎢⎢⎣

Iu1 Iv1

Iu2 Iv2
...

Iui

...
Ivi

⎤
⎥⎥⎥⎦b =

⎡
⎢⎢⎢⎣

It1

It2
...

Iti

⎤
⎥⎥⎥⎦. (6)

Specifically, (6) can be further simplified into a compact
form, expressed as follows:�

�u
�v

�
=

� �
i I 2

ui

�
i Iui Ivi�

i Ivi Iui
�

i I 2
vi

�−1� − �
i Iui Iti

− �
i Ivi Iti

�
. (7)

Therefore, the [�u�v]T can be estimated by solving (7).
Satisfactory accuracy can be obtained by using the LK opti-
cal flow in the scenarios with sufficient textures and stable
environmental conditions, and the three listed assumptions can
be easily satisfied. Unfortunately, its performance significantly
deteriorates in the highly dynamic urban canyons with an obvi-
ous change in illumination and multiple motions in a single
localized region [30] which easily violates the assumptions
of spatial smoothness. To increase the robustness of the LK
optical flow against the unexpected large motion, the image
pyramid aided LK method is proposed, which can separate
large motion into small movements. However, the performance
of LK optical is still not guaranteed in complex dynamic urban
canyons [16].

Fig. 1 shows a scene where the LK optical flow is employed
to track the features between two consecutive images collected
in an urban canyon during the night. One of the features is
located on the car (blue shaded circle) shown in the left figure.
We can see that the strong motion blur exists on the car from
the left (first) to the right (second) figure. Consequently, the
feature is incorrectly tracked to the curb of the road on the
right side (as shown by the red circle). To be specific, it is
caused by the violation of the first assumption of LK optical
flow because the pixel associated with the same pixel is not the
same due to the motion blur. Therefore, the incorrect feature
tracking may cause large errors in data association of the back-
end of VINS. To detect such incorrect feature tracking, and
further improve the performance of VINS, this article proposes
an outlier-aware GNC optical flow presented in Section III.
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Fig. 2. Overview of the proposed method.

III. OVERVIEW OF THE PROPOSED METHOD

The overview of the proposed method is shown in Fig. 2
which is developed on top of the work in [9]. The inputs of
the framework are raw images and acceleration as well as
gyroscope measurements provided by the monocular camera
and inertial measurement unit (IMU), respectively. While the
output of the framework is the pose estimation. The frame-
work starts with the measurement preprocessing, including
IMU preintegration [31] and feature detection modules [29],
presented in Sections V-B and V-C, respectively. These two
modules follow the work in [9]. Subsequently, the factor
graph construction is derived based on the IMU factor and
visual factor, and then the formulation of FGO is presented
in Section V-D. The proposed GNC-OF is shown in the red-
shaded box (first contribution of this article) in Fig. 2, which
enables the removal of the outlier features from the feature
detection module. The blue-shaded box indicates the proposed
degeneration detection and alleviation method (second contri-
bution of this article). The degeneration factor derived from
the degeneration detection module can be further utilized to
benefit the alleviation of the degenerated cases in the coming
epochs.

To make the presentation clear, in this article, matrices are
denoted as uppercase with bold letters, while the vectors are
denoted as lowercase with bold letters. Moreover, the variable
scalars are denoted as italic letters, and the constant scalars
are denoted as lowercase letters.

IV. GNC OPTICAL FLOW

A. Problem Formulation

Specifically, (7) can be expressed as an optimization ori-
ented objective function as follows:

min
�u∗,�v∗

n2�
i=1

�����r

�
�t,i ,

�
�u
�v

������
2

σ i
t

�

with r

�
�t,i ,

�
�u
�v

��
=

�
Iti − h

�
�t,i ,

�
�u
�v

���
(8)

where �t,i denotes a set of observation measurements asso-
ciated with the i th pixel inside the window, including the

position of the feature in the first image frame, the neighboring
pixels, and the next image frame that is required to estimate
the optical flow. [�u∗ �v∗]T refers to the optimized state that
we wish to estimate. σ i

t stands for the uncertainty associated
with the pixel inside the window. n2 represents the number
of observation measurements involved in the window. And
the function h(∗) denotes the observation function connecting
the state and the pixel observation, which can be written as
follows:

h

�
�t,i ,

�
�u
�v

��

= ∂(I (u + �u, v + �v, t + �t) − I (u, v, t))

∂ t
. (9)

Therefore, the robustified objective function of (8) can be
expressed as follows:

min
�u∗,�v∗

n2�
i=1

�
ρ

�����r

�
�t,i ,

�
�u
�v

������
σ i

t

��
(10)

where ρ(∗) refers to the applied robust function, i.e., the GM
function [32] in this article. According to Black–Rangarajan
duality [27], a robust nonlinear least square problem (10) is
equivalent to the following decoupled formulation:

min
�u∗,�v∗,ωt,i∈WWW

n2�
i=1

�
ωt,i

����r

�
�t,i ,

�
�u
�v

������
2

σ i
t

+ ∅ρ(ωt,i )

�
(11)

where ωt,i denotes the weighting for a given pixel measure-
ment from the neighboring window at the epoch t , satisfying
ωt,i ∈ [0, 1]. The variable WWW is a set of weightings of
ωt,i . The function ∅ρ(ωt,i) represents the outlier process that
encodes the penalty on the weighing ωt,i , determined by the
chosen robust function. Therefore, the unknowns of the system
involve �u∗,�v∗ and the optimal weighting (ωt,i) of the
visual measurements. The solving of (11) is equivalent to the
finding of the optimal state estimation of the optical flow and
the optimal weightings of pixel measurements to minimize the
summation of the residuals. To simplify the derivation in the
rest of this article, we represent the weighted residual����r

�
�t,i ,

�
�u
�v

������
σ i

t

using r̃t,i .
Typically, the loss function using the GM function [32] for

the given error function r̃t,i corresponding to the i th pixel
measurement can be formulated as follows:

�(r̃t,i) = (cGM)2(r̃t,i )
2

(cGM)2 + (r̃t,i )
2 (12)

where cGM refers to the parameter that determines the shape of
the GM function. Fig. 3 shows the GM loss corresponding to
residual (r̃t,i) ranging from (−30, 30) with different cGM. The
smaller cGM introduces stronger resistance against the outliers
because the impacts of the enormous outliers are mitigated
by the low curvature long tail. However, this may lead to a
highly nonconvex surface. Consequently, it is hard to globally
solve (11) by using typical nonlinear least square estimation.
Thus, we formulate the GNC-OF to solve (11) in a coarse-to-
fine manner in Section IV-B.
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Fig. 3. Illustration of the GM function with different parameters cGM
annotated with different colors (cyan: cGM = 6, magenta: cGM = 12,
blue: cGM = 18).

Fig. 4. Illustration of the surrogate function for GM with different control
parameters μ annotated with different colors (red: μ = 1000, green: μ = 800,
blue: μ = 600, cyan: μ = 400, black: μ = 200).

B. Solution to GNC-OF

The GNC is a popular method for the optimization of a
universal nonconvex cost function [26], and the main idea is
that a surrogate cost function ρμ(·) is introduced to replace the
general nonconvex cost function ρ(·). The new cost function
ρμ(·) is convex for a certain μ which changes gradually till
the original nonconvex cost function ρ(·) is recovered. During
the process, GNC can provide a solution to the nonconvex
problem.

According to the selected GM estimator, ∅ρμ
(ωt,i ) is derived

as follows:
∅ρμ

�
ωt,i

 = μc2
GM

�√
ωt,i − 1

2
. (13)

As μ tends to +∞, ρμ(·) is convex, and ρμ(·) recovers to
be nonconvex as μ decreases and get close to 1, as shown in
Fig. 4.

Optimize the GNC-OF problem by alternating the following
four steps.

Step 1: Initialization: The variable is initialized by least
squares, and the weightings (ωt,1, ωt,2, . . . , ωt,i ) are initialized
by setting all of them to 1.

Step 2: Variable update: Let weighting ωt,i be fixed, and
optimize [ �u

�v ]. Minimize (14) concerning [ �u
�v ]

min
�u∗,�v∗,ωt,i∈WWW

n2�
i=1

�
ωt,i r̃

2
t,i + ∅ρμ

(ωt,i )

. (14)

Step 3: Weight update: Let [ �u
�v ] be fixed, and optimize ωt,i

which can then be solved in a closed-form as

ωt,i =
�

μc2
GM

r̃2
t,i + μc2

GM

�2

(15)

where r̃t,i denotes the residual of pixel value corresponding to
the i th pixel.

Step 4: μ = (μ/1.4), repeat Steps 2 to 4, until μ < 1.
Therefore, the state [�u∗ �v∗]T together with the associ-

ated weightings setWWW are obtained for a certain feature located
at I (u, v, t) and I (u + �u∗, v + �v∗, t + dt), respectively.
Ideally, the weightings of all the pixels located inside the
window reach or get close to 1 if the feature is correctly
tracked with all the listed three assumptions satisfied. On the
contrary, in the case that most of the weightings are close to
0, the detected feature tends to be the outlier. The recent work
in [33] extends their previous work in [26] by using the Chi-
square test to find the boundary between the inlier and outlier.
On this basis, we set a threshold of weighting to distinguish
those outlier pixels as follows:

ωt,i < ωthresh, ωt,i ∈ WWW (16)

where ωthresh denotes the threshold of weighting. If ωt,i is
smaller than the threshold, the corresponding pixel is deter-
mined to be the outlier pixel. The percentage of such an
outlier pixel is accumulated to more than half of all pixels
in a small window, and the corresponding detected feature
is determined to be the outlier. All the existing features are
evaluated by using GNC-OF following the same way, and the
detected outliers are excluded from the front-end of VINS.

V. DEGENERATION-AWARE VISUAL/INERTIAL

INTEGRATION

A. System States

In this study, the proposed method is based on VINS [9],
and the considered state vector is defined as follows:

χ = �
x0, x1, . . . , xn, xb

c , λ1, λ2, . . . λM
�

xk = �
pw

bk
, vw

bk
, qw

bk
, ba, bg

�
, k
[0, n]

xb
c = �

pb
c , qb

c

�
(17)

where w denotes the world frame and bk represents the body
(IMU) frame. And xk refers to the state of IMU when the kth
image is captured. IMU state involves the position, velocity,
and orientation, denoted by pw

bk
, vw

bk
, and qw

bk
, respectively,

as well as the acceleration bias (ba) and the gyroscope
bias (bg) denoted in the body frame. It should be noted
that the orientation is represented by a quaternion, and the
coordinate transformation is transformed from the subscript
to the superscript frame. n refers to the used keyframes for
optimization, and M stands for the sum of features considered
for optimization. λl refers to the inverse depth of the lth
feature observed for the first time, l ∈ (1, M). xb

c represents
the transformation matrix that transforms the camera frame to
the body frame. In this study, we directly use the extrinsic
parameter calibrated previously.
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B. IMU Modeling With Preintegration

The IMU measurements involve the acceleration bias (bat ),
the gyroscope bias (bωt ) and the additive noise (na, nω).
It is worth noting that the noise is assumed to be Gaussian
white noise. The raw gyroscope (ω̂t) and accelerometer
(ât) measurements modeling is expressed at Epoch t as
follows:

ât = at + Rt
wgw + bat + na (18)

ω̂t = ωt + bωt + nω (19)

where at and ωt denote the expected measurements of the
accelerometer and gyroscope, and the gravity is represented
by gw in the world frame. Rt

w stands for the rotation matrix
that transforms the world frame into the body frame at
Epoch t .

The IMU measurements are utilized to constrain the rel-
ative motion between two consecutive epochs. Thanks to
the high frequency of the IMU, there are plenty of inertial
measurements between the time interval (tk, tk+1). Therefore,
the IMU preintegration technique [31] is employed to integrate
the several measurements into a single factor between two
consecutive frames of bk and bk+1. Through the given bias
estimation, the IMU preintegration is integrated into the bk

frame as follows:
α

bk
bk+1

=
��

t∈[tk ,tk+1]
Rbk

t

�
ât − bat


dt2 (20)

β
bk
bk+1

=
�

t∈[tk ,tk+1]
Rbk

t (ât − bat )dt (21)

γ
bk
bk+1

=
�

t∈[tk ,tk+1 ]
1

2
�(ω̂t − bωt )γ

bk
t dt (22)

�(ω) =

⎡
⎢⎢⎢⎢⎢⎣

0 −ωz ωy ωx

ωz 0 −ωx ωy

−ωy ωx 0 ωz

ωx ωy ωz 0

⎤
⎥⎥⎥⎥⎥⎦ (23)

where (αbk
bk+1

,βbk
bk+1

, γ bk
bk+1

) refer to the preintegration items
that denote the change of position, velocity, and orientation,
respectively. Rbk

t and γ
bk
t represent the rotation matrix and

quaternion, respectively, which transform the body frame at
Time t into the reference frame bk . (ωx , ωy , ωz) stand for the
angular velocity in the IMU frame.

Employing the preintegration items, the position, velocity,
and orientation of the bk+1 in the world frame can be formu-
lated as follows:

pw
bk+1

=
�

pw
bk

+ vw
bk

�tk − 1

2
gw�t2

k

�
+ Rw

bk
α

bk

bk+1
(24)

vw
bk+1

= �
vw

bk
− gw�tk

 + Rw
bk

βbk

bk+1
(25)

γ
bk
bk+1

= qbk
w ⊗qw

bk+1
(26)

where the symbol ⊗ refers to the multiplication between two
quaternions. Finally, the residual rB(·) for IMU preintegration

and system states can be formulated as follows:
rB

�
Ẑ bk
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�
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ba,bk+1 − ba,bk
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(27)

where B denotes the set of IMU measurements. Ẑ bk
bk+1

repre-
sents the observation measurements of the IMU between (bk,
bk+1). δαbk

bk+1
, δβbk

bk+1
, and δθbk

bk+1
stand for the position, velocity,

and orientation residual constraints, respectively. The operator
[·]xyz extracts the imaginary part of a quaternion. δba and δbω

represent the accelerometer and gyroscope biases constraints,
respectively.

C. Visual Measurements Modeling

The visual measurement used in our study is a set of
features detected by the Shi–Tomasi corner algorithm [29].
In this article, the proposed robust GNC-OF is employed
to track the existing features. The number of features and
spatial distribution is based on the work of [9] where the
maximum number of features is set to 150 to guarantee real-
time performance, and the distance between two features is
30 pixels to keep features uniformly distributed. Considering
that lth feature is first observed in the eth image, and it is
observed again in j th image. Let (ûce

l , v̂ce
l ) denote the pixel

position of the lth feature in the eth image of camera frame
c, and let (û

c j

l , v̂
c j

l ) denotes the pixel position of the lth
feature in the j th image of camera frame c. Then the expected
observation of the lth feature in the j th image is derived as
follows:⎡

⎢⎢⎣
xc j

yc j

zc j

1

⎤
⎥⎥⎦ = �

Tb
c

−1
�

Tw
b j

�−1
Tw

be
Tb

cε
−1
c

1

λl

⎡
⎢⎢⎣

ûce
l

v̂ce
l
1
λl

⎤
⎥⎥⎦. (28)

Equation (28) follows the pinhole camera projection
model [34]. (xc j , yc j , zc j )T is the 3-D coordinates of the lth
feature in the j th camera frame c. b denotes the body frame. be

and b j denote the eth and the j th body frame, respectively. Tb
c

is the transformation matrix that transforms the camera frame
into the body frame. Similarly, Tw

be
, Tw

b j
, and Tb

c transform
the coordinates of the subscript to the superscript one. εc is
the camera projection function, which is related to camera
intrinsics, and λl denotes the inverse depth of the lth feature
in the eth image.

The T is the transformation matrix including translation
matrix p and rotation matrix R. Therefore, (28) can further
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be formulated as⎡
⎣ xc j

yc j

zc j

⎤
⎦

= Rc
b

�
R

bj
w

�
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be

�
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��
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��
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�
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�
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�
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(29)

Let p
c j

l denote the 3-D coordinates (xc j , yc j , zc j )T

p̄
c j

l = p
c j

l��p
c j

l

�� (30)

where p̄
c j

l is the expected observation in the normalized plane.
Let the observation measurement of the lth feature in the j th
image be ˆ̄p

c j

l

ˆ̄p
c j

l = ε−1
c

��
û

c j

l

v̂
c j

l

��
. (31)

Hence, the residual model of the reprojection can be derived
as follows:

rC
�
Ẑ

c j

l , χ
 = �

ˆ̄p
c j

l − p̄
c j

l


(32)

where C denotes the set of features that have been observed
at least twice, rC(·) represents the residual of the lth feature
measurement between the two images, and Ẑ

c j

l denotes the
measurement of the observation in the j th image.

D. Factor Graph Optimization

The goal of FGO [35] is to minimize the sum of all
sensor measurement residuals to achieve a maximum posterior
estimation. The residuals in this article contain three parts:
1) the residual from marginalization; 2) the residual from IMU
preintegration; and 3) the residual from the visual reprojection,
consequently the objective function of the system can be
formulated as follows:
min
χ

���rp − Hpχ
��2 +

�
k
B

���rB
�

Ẑ bk
bk+1

, χ
����2

P
bk
bk+1

+
�

(l, j)
C
ρ
���rC

�
Ẑ

c j

l , χ
��2

P
c j
l

�⎫⎬
⎭ (33)

where {rp, Hp} is the prior information from the marginal-
ization operation [36]. Since the sliding window optimiza-
tion technique is adopted in the system, the marginalization
operation is introduced to convert the marginalized states into
a prior. rB(·) and rC(·) are residuals for IMU and visual
measurements, respectively. The detailed information on the
residuals is presented in Sections V-B and V-C. Pbk

bk+1
and P

c j

l
are the information matrix of IMU measurement and visual
reprojection residuals. ρ(·) denotes the robust M-estimator
[37], and Huber is adopted here. l denotes the lth feature,
and c j denotes the j th camera frame.

Fig. 5. Illustration of the visual landmarks distribution. The green circles
denote the position of the landmark. The white lines denote the connection
between the camera and the landmarks. (a) State estimation is constrained by
more and decentralized visual landmarks. (b) State estimation is constrained
by fewer and centralized visual landmarks.

E. Degeneration Detection and Alleviation

While the rejection of the outlier can help to improve the
overall system performance by mitigating the impacts of incor-
rect features correspondence association, however, this can
result in a new degeneration problem. Theoretically, the pose
of the system is mainly constrained by the visual landmarks.
More features normally lead to stronger constraints on the state
estimation. Moreover, more decentralized visual landmark
distribution also leads to better constraints [13]. Fig. 5(a)
shows the scene with constraints from decentralized visual
landmarks. Conversely, Fig. 5(b) shows the case in which very
limited visual landmarks are available as constraints to the
system after the outlier rejection.

1) Jacobian Formulation: Theoretically, the constraint
between the visual landmarks and the state of the system is
connected by the Jacobian matrix of the visual reprojection
residual concerning the rC(Ẑ

c j

l , χ). Therefore, the work in [38]
proposed the detection of the potential degeneration via the
Jacobian matrix. Given the reobserved lth feature in b j , the
reprojection error is associated with two frames be and b j ,
then the Jacobian of the lth feature can be derived as follows:

He
j,l =

⎡
⎢⎢⎢⎣

∂rl
C

∂δpw
be

∂rl
C

∂δqw
be

∂rl
C

∂δpw
b j

∂rl
C

∂δqw
b j

⎤
⎥⎥⎥⎦ (34)

where rl
C denotes the reprojection residual of the lth feature

between frames be and b j . Specifically, the Jacobian compo-
nent for the position and orientation of the frame be can be
expressed as follows [9]:

∂rl
C

∂δpw
be

= Rc
bR

b j
w (35)

∂rl
C

∂δqw
be

= −Rc
bRb j

w Rw
be
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1
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with ˆ̄pce
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��
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l
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l

��
. (36)
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Similarly, the Jacobian component for the position and
orientation of the frame b j is as follows:

∂rl
C

∂δpw
b j

= −Rc
bR

b j
w (37)

∂rl
C

∂δqw
b j

= Rc
b. (38)

Therefore, the combined Jacobian matrix considering all
the visual constraints associated with the current epoch xn =
[pw

bn
, qw

bn
] can be formulated as follows:

HC =
⎡
⎢⎣

He
j,0
...

He
j,E

⎤
⎥⎦ (39)

where HC denotes the Jacobian of all the reobserved features
at the current epoch. The E denotes the number of constraints
associated with the current (latest) epoch xn. The size of the
HC is 2E × 6. Note that we only considered the degeneration
in the position and the orientation estimation, since the other
states are also associated with the position or orientation.

2) Degeneration Detection and Alleviation: To further iden-
tify the level of constraints in the given measurements, the
eigenvalue of the associated Jacobian matrix is employed as
an indicator in both the global navigation satellite systems
(GNSS) [39] field, and the Robotic field [38]. Recently,
the research team from Carnegie Mellon University robotics
institute proposed to use the associated eigenvalues in the
evaluation of the degeneracy of the system built by visual and
light detection and ranging (LiDAR), and the experimental
results showed an improvement in the robustness [38]. The
work in [38] argued that degeneration occurs when the mini-
mum eigenvalues of the HC is smaller than a given threshold
λthresh. However, there is difficulty in adapting a certain value
of the λthresh to different scenarios. For example, a given λthresh

can be suitable for an indoor scenario, while its usability in
outdoor scenarios is limited. To fill this gap, we proposed
the evaluation of both the minimum eigenvalue and the ratio
between the maximum and the minimum eigenvalues.

Given a matrix HC , the singular value decomposition
(SVD) [40] can be expressed as follows:

HT
CHC = U�VT (40)

where the matrix U is a real 6 × 6 orthogonal matrix. Mean-
while, the V is a real 6×6 orthogonal matrix. The matrix � is a
real 6×6 diagonal matrix with nonnegative real numbers on the
diagonal. The diagonal entries λs = �ss are considered to be
the eigenvalues. The s denotes the index of the six eigenvalues
associated with the position and orientation, as follows:

λ = �
λ1 λ2 λ3 λ4 λ5 λ6

�T
. (41)

Therefore, degeneration is detected if λmin is smaller than
an experimentally determined threshold λthresh or the ratio
(λmax/λmin) is larger than a given threshold λratio. The λmin

and λmax denote the minimum and maximum eigenvalues
within the λ, respectively. Therefore, the degeneration detec-
tion above considers both the absolute and relative values

Fig. 6. Experimental setup and the evaluated scenes (a) and (b).

involved in the eigenvalues. Compared with the single λmin

considered, the benefits of the introduced ratio is to avoid
λmax even smaller than λthresh in some extreme conditions.

To alleviate the degeneration of the system arising from the
removal of the outlier, we propose to adaptively increase the
number of features based on the degeneration levels associ-
ated with related eigenvalues. Considering that the minimum
eigenvalue is a powerful indicator of degeneration, we propose
to define the level of degeneration as follows:

Dλ = 	λmin − λthresh	, with λmin < λthresh (42)

where the Dλ denotes the degeneration factor encoding the
level of degeneration. Larger Dλ means that stronger degener-
ation occurs and vice versa. Then the total number of features
to be detected and tracked will increase in the next epoch as
follows:

N∗
f = N f + Dλ

10
, with λmin < λthresh (43)

where the N∗
f denotes the total number of features after

adaptively increasing, and N f denotes the number of fea-
tures remaining after the removal of outliers. Therefore, the
degeneration will be alleviated in the subsequent epochs after
the addition of more features. Fortunately, the additional
features can easily be detected in an outdoor environment, and
these features are also extracted using the Shi–Tomasi corner
algorithm, and the distance from the existing features is set to
30 pixels to keep the features uniformly distributed.

VI. EXPERIMENT RESULTS AND DISCUSSION

A. Experiment Setup

1) Experimental Scenes: Two real datasets were collected
in typical urban canyons of Hong Kong to verify the feasibility
of the proposed method in this article. All the data are
postprocessed and the experimental sensor setup is presented
on the left side of Fig. 6. Fig. 6(a) and (b) illustrates the scenes
of the tested urban canyons. A commercial level Xsens MTi 10
IMU sensor was utilized in the collection of raw IMU data at
a frequency of 200 Hz. The monocular camera was used to
collect raw images at a frequency of 10 Hz. The ground truth
of the pose estimation was provided by the NovAtel SPAN-
CPT, which is a GNSS (GPS, GLONASS, and BeiDou) real-
time kinematic (RTK)/inertial navigation system (INS) with
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fiber-optic gyroscopes integrated navigation system. In addi-
tion, the well-known Inertial Explorer software [41] was
used to postprocess the data from NovAtel SPAN-CPT to
maximize the accuracy of the ground truth of positioning. All
the collected measurements were recorded and synchronized
based on the timestamp provided by the robot operation system
(ROS) [42] platform. The baseline distance between the rover
and the GNSS base station is about 7 km. The intrinsic
parameters of the camera and the extrinsic parameters between
the applied camera and the IMU sensor are calibrated based
on the recommendation of [43]. Different from the extensively
evaluated EuRoC dataset [11] which was mainly collected in
indoor scenarios, the applied datasets (even includes a night
scene) collected from urban canyons in this article comprises
numerous dynamic objects and unstable illumination condi-
tions, which can cause numerous unexpected outlier visual
measurements. To benefit the research community, we open-
sourced the evaluated dataset [44] in this article.

2) Experimental Parameters: We set the threshold λthresh

to an experimentally determined value of 200 based on our
recently published urbanNav dataset [45]. The ωthresh is set to
0.5.

To stepwise verify the contributions of the proposed method,
several methods were compared as follows.

1) VINS-Mono [9]: The original VINS solution from [9].
2) ORB-SLAM3 [7]: The VINS solution from [7] where

the ORB features are employed for visual feature detec-
tion and association.

3) VINS-ac-ME [13]: VINS aided by adaptive covariance
estimation and adaptive M-estimator proposed in our
previous work [13].

4) VINS-GNC-OF: The original VINS solution from [9]
is aided by the visual outlier rejection in the front end
using the proposed GNC in this article. This is to verify
the first contribution of this article.

5) VINS-DAOM: The proposed degeneration-awareness
outlier mitigation for VINS in this study. Note that
the proposed optical flow, GNC-OF, is included in the
front-end of this method.

The improvement from the VINS-ac-ME compared with
the original VINS-Mono for the positioning estimation has
been extensively studied in our previous work [13], thus
we present the results of the VINS-Mono, and VINS-ac-ME
directly. In this article, we analyzed the proposed method
from two parts: the outlier mitigation in the front-end and
the degeneration-awareness in the back-end. Interestingly,
we combined the geometry of the visual feature distribution
and the quality of the visual feature tracking to estimate the
uncertainty of visual measurements to further mitigate the
effects of outlier measurements in the previous work [13],
while we aim to dive into the fundamental problem of optical
flow for feature tracking in this study by proposing the
GNC-OF detection of outliers and the mitigation their effects
for positioning estimation.

To evaluate the experimental results, we used the evaluation
of odometry and SLAM (EVO) [46] tool, which is extensively
used for the SLAM algorithms. The mean error is defined

TABLE I

POSITIONING PERFORMANCE OF THE LISTED METHODS IN URBAN
CANYON 1

by the relative pose error (RPE) in the EVO. Besides, the
final total positioning error is provided, which is calculated
by the final epoch of the positioning error, denoted by FPE.
The experimental results are evaluated in the local frame, and
the first frame is regarded as a reference frame.

B. Experimental Evaluation in Urban Canyon 1

1) Positioning Performance Analysis: The first experiment
is conducted in a typical urban canyon (Whampoa in Hong
Kong) to verify the performance of the proposed method.
The positioning results are listed in Table I. With the help
of the proposed degeneration-awareness and outlier mitigation
method, the mean error decreased from 0.71 to 0.40 m,
and the standard deviation (STD) also dropped to 0.46 m.
Interestingly, we found that the proposed optical flow method
can significantly improve the performance when compared
to the previous method and VINS-Mono results and ORB-
SLAM3 results, also there was a slight improvement in perfor-
mance due to further degeneration awareness and mitigation.
To further validate our proposed method, another experiment
is conducted in a more challenging environment.

The trajectories of the listed methods and the ground truth
trajectory are shown in Fig. 7. The length of the trajectory
is 546.131 m. The trajectory of the proposed method (blue
curve) is the closest to the reference trajectory (black curve).
In contrast, the trajectory of the ORB-SLAM3 (cyan curve) has
the highest deviation from the reference point. The positioning
error of the listed methods is shown in Fig. 8. There is
a significant improvement in the accuracy of the proposed
between epoch 0 and epoch 50.

2) Rotation Performance Analysis: Table I shows that there
is a significant improvement in positioning accuracy using
the proposed method. To further validate the effectiveness
of the proposed method in improving the rotational accuracy,
the performance comparisons are shown in Table II. Interest-
ingly, the mean errors of rotation from the listed methods are
almost the same except for ORB-SLAM3. We found that the
initialization of ORB-SLAM3 is not stable, and its drift is
heavy in urban canyon 1. Therefore, we take the VINS-Mono
methods as the baseline, which is more robust. The maximum
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Fig. 7. Estimated trajectories of the VINS-Mono and the listed methods and
reference trajectory in urban canyon 1.

Fig. 8. Positioning errors of the listed methods in urban canyon 1.

TABLE II

ROTATION PERFORMANCE OF THE LISTED METHODS IN URBAN
CANYON 1

value increases from 4.81◦ to 6.79◦ after the detected outliers
are removed based on the proposed GNC-OF in the front-end,
and this change means that the removal of excessive outliers

Fig. 9. Rotation errors of the listed methods in urban canyon 1.

TABLE III

POSITIONING PERFORMANCE OF THE LISTED METHODS IN URBAN
CANYON 2

can also lead to degeneration in rotation. The maximum error
drops to 4.80◦ from 6.79◦ based on the proposed degeneration
alleviation method, and the improvement can also be seen in
Fig. 9. The rotation error of VINS-DAOM denoted by the
blue curve declined compared to the VINS-GNC-OF curve
denoted by magenta during the first 20 epochs. Therefore, the
supplemented features based on (43) can effectively provide
more constraints in the alleviation of the degenerated epoch.

Generally, the improvement in the rotation estimation is
limited after using the proposed method. On the one hand,
the rotation usually offers better constraints with the help
of the gyroscope sensor, which is significantly higher in
accuracy than the accelerometer inside the employed IMU
sensor. Moreover, the pitch and the roll angle are globally
observable [9] which further enhances the accuracy of the rota-
tion estimation. Thus, the partial outlier visual measurement
removal does not necessarily lead to the degeneration of the
rotation estimation [38].

C. Experimental Evaluation in Urban Canyon 2

1) Positioning Performance Analysis: To validate the relia-
bility of the proposed method, another experiment is conducted
in urban canyon 2 (Tsim Sha Tsui in Hong Kong) during
the night, the scene incorporated numerous dynamic objects

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 24,2022 at 08:52:36 UTC from IEEE Xplore.  Restrictions apply. 



BAI et al.: DEGENERATION-AWARE OUTLIER MITIGATION FOR VINS 5019915

Fig. 10. Residuals of visual reprojection in the u- and v-directions of
conventional (VINS-Mono) and the proposed method (VINS-GNC-OF).

and unstable illumination conditions. The positioning results
for the listed methods are shown in Table III. The mean
error of VINS-Mono is 0.79 m, with the maximum error
reaching 5.58 m. Based on the previous work (VINS-ac-
ME), the mean error decreases to 0.59 m. The improvement
can reach 25.32%. In the previous work, we focused on
the visual measurement model based on the quality of the
feature tracking to improve the performance of VINS in urban
canyons, and thus in this study, we continue to explore the
quality of feature tracking. The mean error of the proposed
optical flow VINS-GNC-OF decreased to 0.54 m and the
maximum error dropped to 3.51 m. Furthermore, by increasing
the features in the back-end of the VINS, the mean error
further decreased to 0.52 m compared to the 0.79 m of the
VINS-Mono, with an improvement of 34.2%, and the maxi-
mum error decreased to 3.94 m. The STD was also reduced
to 0.58 m.

Typically, the outlier visual measurements usually involve
larger residuals. To further elaborate on the reason behind
the improvement of the proposed GNC-OF in improving the
VINS through the rejection of the visual measurement outlier,
we present the residuals of the visual reprojection in the
back-end of the VINS corresponding to the conventional VINS
and the GNC-OF aided VINS as shown in Fig. 10. The top
and bottom figures show the residuals in u- and v-directions,
respectively. The top of Fig. 10 shows that the majority of the
residuals lie within −3 to 3. With the help of the GNC-OF,
the histogram tends to be thinner with a smaller STD which
shows the effectiveness of the proposed method in rejecting the
visual measurements outliers with larger residuals. A similar
phenomenon can be found in the v-direction as shown at the
bottom of Fig. 10.

The trajectories of the listed methods and reference trajec-
tory are shown in Fig. 11. The total length of the trajectory
in urban canyon 2 is about 1984.448 m. The trajectory of the
proposed method VINS-DAOM (blue curve) is the closest to
the reference trajectory (black curve). The positioning error
of the listed methods is shown in Fig. 12. Thus, improved
performance in positioning is obtained by the proposed method
(blue line) compared to the original VINS-Mono (red line).
Since the VINS can only provide the relative pose estima-
tion continuously, the smaller attitude estimation can lead

Fig. 11. Estimated trajectories of the VINS-Mono and the listed methods
and reference trajectory in urban canyon 2.

Fig. 12. Positioning errors of the listed methods in urban canyon 2.

to significant drift in the long term, as shown by the green
curve in Fig. 11. To mitigate the overall drift in VINS,
one promising solution is to integrate the globally referenced
GNSS positioning and the locally smooth estimation from
VINS, and this will be the focus of one of our future
works.

2) Discussion: Analysis of Residuals and Weightings for
GNC-OF in Front End of VINS: To show further details
of the tracking feature using the conventional optical flow
and the proposed GNC-OF, we selected a challenging case
of urban canyon 2 as shown in Fig. 13. The left image
and right images are two consecutive frames from epochs
351 and 352, respectively. Intuitively, the conventional optical
flow-based feature tracking method finds an incorrect feature
correspondence with a matching pair of feature A (in epoch
351) and feature C (in epoch 352) as feature A should be
located on a road lane line. We can see that the incorrectly
tracked feature C is located under a light condition with a
very similar pixel value to the road lane line. As a result,
the conventional optical flow-based tracking feature method
gets into the local minimum leading to an incorrect tracking
feature. Fig. 13(c) shows the residuals of the pixel values
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Fig. 13. Analysis of the residuals and weightings of the feature tracking of conventional optical flow from OpenCV and the feature tracking from GNC-OF
at epochs 351 and 352. (a) Residuals between features A and B (tracked by GNC-OF). (b) Weightings of each pixel of feature B (tracked by GNC-OF).
(c) Residuals between feature A and C (tracked by conventional optical flow).

associated with the matching pairs of feature A (in epoch 351)
and feature C (in epoch 352). We can see that the maximum
residual reached 150 due to the incorrect tracking feature.
Moreover, the incorrectly tracked feature C introduces a large
error compared with the correctly tracked feature B which can
significantly degrade the performance of the data association
in the back-end of the VINS.

The proposed GNC-OF correctly tracked the feature with
a matching pair of feature A (in epoch 351) and feature B
(in epoch 352). Fig. 13(a) shows the detail of the residual
associated with the tracking feature. Interestingly, we can
see that the shape of the road lane line can also be seen
in the residual heat map. The deeper color indicates larger
residuals. Furthermore, the larger residuals mainly occurred
on the boundary of the road lane line. Fig. 13(b) shows
the estimated weightings of the pixel positions surrounding
the feature pair A and B. The bluer color indicates the
smaller weightings. As expected, the pixel positions with
larger residuals are associated with smaller weightings, which
subsequently leads to the rejection of the outlier measure-
ments. As a result, feature A is correctly tracked as feature B in
epoch 352.

3) Discussion: Degeneration Detection and Analysis in
Back End of VINS: As mentioned in the experimental setup,
we experimentally set the parameter of λthresh to 200 to detect
the potential degeneration. Subsequently, we presented some
of the detected degeneration scenes as shown in Fig. 14.
We found that all the minimum eigenvalues in Fig. 14(a)–(c)
are smaller than 200 and the related RPE is larger than the
mean error of 0.54 m (Table III). This phenomenon shows

TABLE IV

COMPUTATION COST STUDY OF THE VINS-MONO AND THE PROPOSED

METHOD IN URBAN CANYON 1

that the positioning error tends to increase due to insufficient
feature constraints (degeneration). However, many factors can
cause large errors such as poor illumination, dynamic objects,
and feature distribution. Fig. 14(d) shows that although the
minimum eigenvalue is 192.34, with an RPE of 0.243 m. This
is because the limited high-quality features are used as the
constraints of the state. In addition, the vehicles in Fig. 14(d)
have no movement, and thus there are no dynamic features.
Fig. 14(g)–(i) are detected as healthy cases because the min-
imum eigenvalues are more than 200 with relatively small
RPE values. Specifically, the detected feature in Fig. 14(g)–(i)
are more uniformly distributed compared to the degeneration
case in Fig. 14(a)–(c). Compared to the degeneration case
defined using minimum eigenvalue, the maximum eigenvalues
in Fig. 14(e) and (f) are even smaller than 200, and thus
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Fig. 14. Illustration of the degeneration and healthy case with associated maximum and minimum eigenvalues, and relative positioning errors. The red and
blue circles are the detected features, and the red circle denotes that the feature is tracked more times than the blue one. (a)–(c) Minimum eigenvalue is
smaller than 200, thereby the case is degenerated. (d) There are no dynamic features, the case is healthy. (e)–(f) Maximum eigenvalue is even smaller than
200, and thus the ratio between λmax and λmin are used to identify the degeneration case. (g)–(i) Minimum eigenvalue is larger than 200, thereby the case is
healthy.

Fig. 15. Histogram of the minimum eigenvalues concerning the translation
estimation before outlier removal (conventional VINS-Mono) and after outlier
removal (proposed VINS-GNC-OF).

the ratio between λmax and λmin are used to identify the
degeneration. The ratio is also obtained in the same way as
Fig. 14.

To examine the degeneration case after the removal of
outliers by the proposed GNC-OF, and we analyzed the
histogram of the minimum eigenvalues concerning the trans-
lation estimation before outlier removal (conventional VINS-
Mono) and after outlier removal (proposed VINS-GNC-OF),
as shown in Fig. 15. The x-axis denotes the minimum
eigenvalues for translation estimation. The y-axis represents
the volume associated with each bin of the histogram. Sta-
tistically, we found that the number of minimum eigen-
values (near 0 to 200) increases after the rejection of the
outlier feature using the proposed method. This is due to
the enhanced degeneration caused by the rejection of the
visual measurements, where the smaller eigenvalue means that

the corresponding direction has fewer constraints than the
larger one.

D. Discussion: Computational Time Cost Analysis

To analyze the real-time performance of the proposed
method, a computational cost study is provided in Table IV.
Especially, our processor is based on Intel Core i7-9750H
CPU at 2.60 GHz. Table IV compares the processing time
in the front-end and back-end of the conventional method
and proposed method, respectively. The feature tracking
is time-consuming in the front-end, thereby our proposed
method needs 0.04 s more than the traditional method.
Overall, the performance of our proposed method can be
real-time.

VII. CONCLUSION

Achieving satisfactory positioning of VINS in urban
canyons is challenging due to the influence of numerous
factors, such as dynamic objects and illumination conditions.
Different from the previous work [13], this study excludes
the outliers detected from the front-end of VINS, while also
detecting and removing the resulting degeneration. Given the
degeneration level, the actual number of features is considered
to be significant in the mitigation of degenerated performance.
The improved performance is demonstrated in both experi-
ments in urban canyons 1 and 2.

Future studies will focus on investigating the integration
of VINS positioning with a global navigation satellite system
to provide more robust and accurate positioning for vehicular
navigation.
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